Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle
نویسندگان
چکیده
BACKGROUND Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.
منابع مشابه
How we move is universal: scaling in the average shape of human activity
Human motor activity is constrained by the rhythmicity of the 24 hours circadian cycle, including the usual 12-15 hours sleep-wake cycle. However, activity fluctuations also appear over a wide range of temporal scales, from days to a few seconds, resulting from the concatenation of a myriad of individual smaller motor events. Furthermore, individuals present different propensity to wakefulness ...
متن کاملDynamics of sleep-wake cyclicity in developing rats.
Adult mammals cycle between periods of sleep and wakefulness. Recent assessments of these cycles in humans and other mammals indicate that sleep bout durations exhibit an exponential distribution, whereas wake bout durations exhibit a power-law distribution. Moreover, it was found that wake bout distributions, but not sleep bout distributions, exhibit scale invariance across mammals of differen...
متن کاملREM sleep complicates period adding bifurcations from monophasic to polyphasic sleep behavior in a sleep-wake regulatory network model for human sleep
The structure of human sleep changes across development as it consolidates from the polyphasic sleep of infants to the single nighttime sleep period typical in adults. Across this same developmental period, time scales of the homeostatic sleep drive, the physiological drive to sleep that increases with time spent awake, also change and presumably govern the transition from polyphasic to monopha...
متن کاملDynamics of Sleep–Wake Cyclicity at Night Across the Human Lifespan
Studies in adult mammals (rats, cats, mice, and humans) have revealed a surprising regularity in the duration of sleep and wake bouts. In particular, wake bout durations exhibit a power-law distribution whereas sleep bout durations exhibit an exponential distribution. Moreover, in rodents, sleep bouts exhibit an exponential distribution at all ages examined, whereas wake bout durations exhibit ...
متن کاملSpontaneous cortical activity is transiently poised close to criticality
Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings o...
متن کامل